Wir können Gesundheit

Gefäßverengungen behandeln oder nicht

Ingenieurteams simulieren das Verhalten von Blutgefäßen. So wollen sie abschätzen helfen, ob eine Behandlung notwendig ist und wie sie aussehen sollte.

Ruhr-Universität Bochum am 30.04.20


Stefan Seifert (links) und Daniel Balzani im Labor des Lehrstuhls für Kontinuumsmechanik.
© Roberto Schirdewahn

Wenn sich in Arterien Ablagerungen gebildet haben, die das Blutgefäß zu verschließen drohen oder sich lösen und kleinere Gefäße verstopfen könnten, stehen Medizinerinnen und Mediziner vor der Frage, ob und wie sie eingreifen sollten. Methoden wie die Ballondilatation sind nicht ohne Risiko. Die Teams der Mechaniker Prof. Dr. Daniel Balzani und Prof. Dr. Klaus Hackl an der Fakultät für Bau- und Umweltingenieurwissenschaften der Ruhr-Universität Bochum (RUB) arbeiten daran, die Eigenschaften von Blutgefäßen so exakt zu modellieren, dass eine Vorhersage des Risikos möglich wird. Das könnte eine Entscheidungshilfe im klinischen Alltag bedeuten.

Komplikationen der Behandlung

Bei der Ballondilatation wird von der Leiste des Patienten oder der Patientin durch einen Katheter ein kleiner Ballon bis zur verkalkten Stelle der Arterie vorgeschoben und dort mit Druck aufgeblasen. Dadurch erweitert sich das Gefäß, und das Blut kann wieder fließen. Ist der Druck allerdings zu hoch, wird das Blutgefäß zu weit aufgedehnt und der Plaque kann einreißen. Oder es kommt zu so starken Verletzungen der Gefäßwand, dass es später Komplikationen gibt.

Um solche Vorkommnisse vorhersehen und vermeiden zu können, stellen Wissenschaftlerinnen und Wissenschaftler aufwändige Berechnungen an. Sie simulieren das Verhalten elastischer Gewebe wie Blutgefäße. Daniel Balzani und sein Team konzentrieren sich dabei darauf, das Risiko für mögliche Schädigungen vorab zu berechnen. Die Berechnung eines solchen Risikos ist allerdings alles andere als einfach.

Optimales Material wachsen lassen

Neben der verschiedenen Orientierung von Fasern des Gefäßes müssen viele andere Effekte bei Simulationen berücksichtigt werden, zum Beispiel die Elastizität der Gefäßwand, die Eigenspannung in der Arterie, die Aktivität der glatten Muskelzellen, die das Gefäß umgeben und seinen Durchmesser aktiv beeinflussen, und die Schädigungen bei einer möglichen Überdehnung des Gefäßes. Ganz zu schweigen von der Beschaffenheit der Plaques, die für die Verengung von Blutgefäßen verantwortlich sind.

Die Ingenieure setzen bei ihren Berechnungen darauf, dass sich die Strukturen jeweils angepasst an die jeweilige Belastung entwickeln, ganz ähnlich wie sich Muskeln bei stetiger Beanspruchung verdicken. „Mit diesen Informationen können wir sozusagen das optimal passende Material in der Simulation wachsen lassen“, erklärt Balzani. Für jede Gefäßeigenschaft entwickeln die Ingenieure einen eigenen Algorithmus. Schließlich müssen sie alle miteinander gekoppelt und alles zeitgleich berechnet werden. „Ganz so weit sind wir noch nicht“, schränkt Daniel Balzani ein. Einzelne Kombinationen sind jedoch schon umgesetzt. Für die Berechnung dieser miteinander verschränkten Algorithmen müssen Großrechner ran. „Selbst die brauchen einige Tage für die Berechnung zweier Herzschläge“, so Balzani. Auch Klaus Hackl arbeitet mit seinem Team daran, den Erfolg einer möglichen Ballondilatation vorherzusagen. Sein Hauptaugenmerk liegt dabei jedoch auf der Computersimulation der Heilung verletzter Gefäße.

Ausführlicher Beitrag in Rubin

Einen ausführlichen Beitrag zu dem Thema finden Sie im Wissenschaftsmagazin Rubin.

Gesundheitsforschung Herz & Kreislauf

MedEcon Ruhr © 2020

Wir können Gesundheit
MedEcon Ruhr